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The elastic stability of a thin-walled circular cylindrical shell

is investigated by means of the small-deflection theory when the shell

is subjected to such non-uniform heating as causes a uniform axial com-

pressive stress to arise in a band of width 2b while the rest of the shell

is free of stress. The critical value of the compressive axial stress is

found to be equal to the critical stress of the same circular cylindrical

shell when subjected to uniform axial compression provided the band is

not extremely narrow. In the latter case the critical stress of the band

is higher than that of the uniformly compressed shell.
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NOTATION

A,B,C,D,F,G,H,J Coefficients in Eq. (11)

A',B',C',D',F',G',H'pJ' Coefficients in Eq. (13)

a radius of median surface of circular cylindrical shell

2b width of heated band

E Young's modulus of elasticity

h wall thickness of shell

n reduced wave number (see Eqs. (11) and (13)]

u* axial displacement

u reduced axi.al displacement defined in Eq. (1a)

v* circumferential displacement

v reduced circumferential displacement defined in Eq. (4b)

w* radial displacement

w reduced radial displacement defined in Eq. (5)

x* axial distance

x reduced axial distance defined in Eq. (3a)

z function of x and 0

al, a2 quantities defined in Eqs. (12)

ol' 02 quantities defined in Eqs. (12)

71, 72, 73, 74 quantities defined in Eqs. (14)

2 laplace's two-dimensional operator defined in Eq. (2a)

V-4 integral operator defined in Eq. (16b)

Poisson's ratio

P - OClX/~ critical stress ratio defined in Eq. (2b)

uniform axial compressive thermal stress within band
width of Zh
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ccl classical value of critical stress for uniform axial
compression given in Eq. (2c)

* circumferential coordinate (measured in radians)

S~reduced circumferential coordinate defined in Eq. (3b)

-,0, T, 2 matrices defined in Eqs. (32)

'0', 2 matrices defined in Eqs. (35)

The following subscripts refer to:

h heated region

u unheated region

0 edge of heated region

x and following a comma indicate differentiation

- vii -
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INT•ODUCTION

The commonest structural element of a missile is the thin-valled

circular cylindrical shell. Wihen it is heated non-uniformly by the
boundary layer of the external supersonic air flow or by an internal

rocket engine, thermal stresses arise which can cause buckling. It was
1*shown in an earlier paper that the shell is most likely to buckle

when the temperature varies in the circumferential direction. A par-

ticularly simple circumferential temperature variation was selected for

the present investigation because it makes possible a rigorous solution

in closed form. It is characterized by a uniform temperature rise

causing a uniform compressive thermal stress in a heated band of width

2b with the rest of the shell remaining at its uniform initial temper-

ature. The analysis, carried out with the aid of the small-deflection

theory, leads to the interesting conclusion that the critical stress of

the heated band is the same as the critical stress of a complete cylin-

drical shell subjected to uniform compression unless the heated band-

width is very small. In the latter case the critical stress of the band

is higher than the critical stress of the uniformly compressed shell.

STATOMM?' OF' 9.1E P'ROBLEM

A thin-walled circular cylindrical shell is heated along an axial

strip in such a manner that a width 2b of the circumference attains a

uniform temperature T above the uniform initial temperature while the

temperature of the rest of the shell remains unchanged. It is assumed

that the cylindrical shell is very long in the axial direction and thus

the thermal stress caused by the heating has the constant value ox

(positive when compressive) over a substantial length of the heated strip

as well as across its entire width 2bj and outside the heated strip the

thermal stress is zero. Such conditions can be realised with a short

cylindrical shell also if the circular boundaries of the shell are

prevented from dioplacing in the axial direction.

"Superscript numbers refer to the Bibliography at the end of the paper.
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It has been shown2, that the solution of a class of problems to

which the present problem belongs can be accomplished most conveniently

if equations of the Donnell type are used. These equations were given

recently in a particularly simple form by lachbar . The equation governing

the radial displacement w is:

v+w + 2p0v W0 (la)
•2OOOC ,XX

The other two displacements are related to w by the equations

Vu,. W X (lb)

.4
V v -(2 + )w lX +w lo (lo)

where 2 is Laplace's two-dimensional operator defined as

72Zz = ZX (a 2s/ax 2 ) + (a2z/aO2) (2a)

and

E h (2b,c)%/%z •z =[3(l - D2)1/7 ';

The non-dimensional coordinates and displacements are defined as

x - (x*/a)(2l/crc)l/2 = *(2(/%c)1/2 (3a,b)

u - (u*/a)(2El/cy)l/2 v (v*/a)(2Zal )0 1/2 (4,b)

W (w*/a) (5)

and. x* is the axial coordinate (which is a distance), 0* the circum-

ferential coordinate (which is an angle measured in radians), while

u*, v* and w* are the elastic displacements (measured in units of
length) in the axial, circumferential and radial directions (see Fig. 1).

Moreover a is the radius of the middle surface of the shell, h the

wall thicItness, I Young's modulus of elasticity of the material and

'a is Poisson's ratio. Since
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(/1)l/2 - [12(1 - (a2)]1/4(/h)1/2 (6)

in the normalization process 0* is multiplied by (a/h)I/2, x*, u*

and v* are divided by (ah)1/2 and w* is divided by a. It may also

be mentioned that 'cl is the critical stress of the cylindrical shell

subjected to uniform axial compression as calculated from the classical

theory.

In the present problem p is a positive constant in Eq. (is) when

101 < 00 = + 0o(2/1)1/2 = + (b/a)(23/acl)l/2 (7)

When inequality (7) does not hold, p is zero in Eq. (1a).

Earlier experience5 has shown that details of the conditions of

support along the circular boundaries have little effect on the critical

value of the axial stress when the length of the cylinder is greater than

the diameter. For this reason no boundary conditions will be prescribed

along these edges. Inspection of the characteristic displacement functions

obtained reveals that these functions correspond to sensible conditions

along the circular boundaries.

Important boundary conditions must, however, be stipulated along

the generators separating the region with thermal stress from the regions

without thermal stress. If the two different regions are indicated by

the subscripts h and u, the conditions that radial displacements.,

slopes, as well as bending moment and effective transverse shear result-

ants must be the same at the boundary for the two different regions can

be stated as

wh a wu wh,O a w,• (8a,b)

wh,•= O , wh,• = wu,O (8c,d)
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In addition one has to require that the axial and circumferential

displacements as well as the membrane stress resultants should be the

same at the boundary when calculated for the two different regions. In

the form of equations

U h n u ~ uh, 0  u , (9a,b)p~

v -v v -v (9c,d)
tr / 4 vln,/I4 ^S S14U e,4.

It will be shown later that these f6ur boundary conditions are mathemati-

cally equivalent to four boundary conditions on w; the latter can be

obtained from the former with the aid of Eqs. (lb) and (ic).

SOUTION IN M UNHEAMD REGION

In the region where the thermal stress is zero we set p - 0 and

obtain from Eq. (la)

SXXXX(10)

A complete set of characteristic functions of this equation can be

written as

w/sin nx. - 'e cos 0 + Be sin, 10 + ce coo. 20

e 1 r 1+ De sin t,ý Fe coos01.0+Ge sin l0

+ He 09 Cos 02  + Je#ai sin 0? (11)

where

C1, +(/22 2 + + + \ (12a)
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-4j

2i

a1 n2 + 1//2 (n (12b)
. +i+ - Y

02-+ •'/2)M n- +) 2 ( - )k (12d)

n is a positive real number and A, B, ... J are constants of integration.

SOLUTION IN THE HEATED REGION

In the region of constant temperature rise the thermal etress

is a positive constant, and so is the stress ratio p. A complete set

of characteristic functions can be given as

v/sin nx A' cosh 71Y0 + B' cosh 720 + C' cos 730 + D' cos 7Y + F' s

+ G' sinh 720 + H' sin 30 + J' sin 740 (15)

where

1/2

in Pq (11).

Y• +• ++ n) -(-•l? 2. ,1 (14b)

2~~~ 
s:'" (+-, /

3-5-
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MDTCUUN OF MMI NEDIAN-PLAIE BCXUKDARY -COUDIIONS

It is convenient to replace the median-plane boundary conditions

on u and v with boundary conditions on w. When this is done,

Eqs. (lb) and (1c) need not be solved explicitly. First, Eq. (la) can

be written in the form

S[ +P()].. - w (15)

If negative exponents are introduced for the differential operators and

are defined to denote inverse operations such that

~Z ( -) Z (16a)

v-9(v•z) = z (16b)

the radial displacement w can be written symbolically as

S+ 2p (MV ] w (17)

Substitution of this expression in the right-hand member of Eq. (lb)

results in

+, . ,,{, (2, (' - (

Hence

-2p ,,(. ) ,,a () (•) w (19)

* [ a. a y l -6a 2]



Similaly, from Eq. c) we obtain

+2p [(2 + v) x~ ~3()i~ (20)

It is to be noted that Eqs. (19) and (20) comprise derivatives of

v up to the seventh order in 0. Hence the boundary conditions (9) will

comrise derivatives of v up to the eighth order in 0. However, the

eighth-order derivative is linearly dependent on w and its first seven

derivatives in consequence of Eq. (la). There remain, therefore, con-

ditions to be satisfied at the boundary by w and its first seven

derivatives with respect to 0. Our problem can thus be stated completely

by means of Eq. (1a) and eight boundary conditions on w and its first

seven derivatives with respect to 0.

SYNNETRIC HJCKLING

First the problem of buckling symmetric to the center line of the

heated strip (0 = 0) will be considered. Hence the boundary conditions

must be written for 0 - 00 on the basis of the solution given in

Eq. (13) with

F' O' =H' J' = 0 (21)

For the adjacent unheated region the origin of coordinates will be
shifted to 0 - g0 and thus in Eq. (11) and in the derivatives of w

calculated from Eq. (11), 0 will be set equal to zero when the boundary

conditions are written. For the other unheated region the origin is

shifted to O- "•,0 the positive sense of 0 is inverted, and the

boundary conditions are again evaluated at 0- 0. At r - r (or

measured from the center line of the heated strip) the displacements u,

v and w, as well as their derivatives involved in the boundary condi-

tions, are so small that they can be disregarded. Hence no conditions

will be stipulated at 0vr and in Eq. (11) we shall set

"-7-



F =G - -J =O (22)

Thus Eqs. (8a)-(8d) bec• e

A' cosh 10o + B' cosh 2o + C' 3oo 3o00 D' 0o0 7y410 - A + C

(23.)

A' 1 Bin y100 + B'7 2 5Bin 720 - C'" 3 sin 70 - D" sin ' 00

--l,+ P1l -a + D2(23b)

A' 2 oo.B 2  1,•2 2
A1, 71.00 + B 2 COS Y200 - C 73 coo 7300 - D'71o Con 7400

=A(c4 -0) -B2MNAl + C(a2 _p2)-_Decx2 p2  (23c)

Because of the synuetry, these equations are equal3• valid at 0 - O0

EMSSION OF BOUNDARY CONDITIONS ON u A +D v IN T•M8 OF w

Because of the form

wh w - f(0)sin nx (24a)

of the solution given in Eq. (13), and the form

n w - g(o)sin nx (24b)

given in Eq. (10), one can write Eq. (19) as

u (4 V 1 " 2 2[*+16 (25)

8 - Ee1 .

I~~~ ~ ~~~~~ __ _____________



Also

Hence boundary condition (9a) becomes

(n - 2n7 - (+(n~ 2n7$ *)7

2 a2+p

+ n4a _2 + 6 )V (27)

Several terms of this equation cancel because Eqs. (8a) and (8c) must be
satisfied at the boundary 101 There remains therefore

.s jA +} 2p(8

Similarly, boundary conditions (9b) to (9d) become

nn

a54+$ 17 j (28b)W n U0 x

'4 +14 a
{m7~72p( 2 + 0½ 7)}

- ia6)~, m (28c)

(nI-e wU -9-



But from Eq. 17 we obtain

8 2
w n ( 4+ 1 - 2P)w + 4n ( n 2 P) a

+2n2(p-3) w+ 2aw (29)

Substitution in Eq. (28e*) and omission of terms that mutually cancel

each other because of the first four boundary conditions, reduce

Eq. (28d*) t

1 2Ua4 + U a6 _ p 2 _ 2n V

\~l 2u 7 +.~a 2p--2 n UUa

1 -" 2) 6- + 7 a7 V(28d)

We observe that 4th and 6th derivatives(in addition to lower order
derivatives) occur in Eqs. (28a) and (28d); by using a suitable multiply-
ing factor we eliminate first all the 6th, and then all the 4th, deriva-
tives to find Eqs. (30a) and (30b). Similar considerations lead to
Eqs. (30c) and (30d). Denoting derivatives with respect to 0 with

Roman numeral superscripts we obtain:

i viv .2;m ivwh =p w- u (30)

wvi 2 2 i h (301)
h • Ph -

- 2 21 v 3o
w.-2hV -v 30

______________0___



S•wh 2 0 n h 4 0n w w( 3 d

Four boundary conditions were given explicitly in Eqs. (23a) to
(23d). Four more explicit expressions are obtained if Yh and wu are

substituted from Eqs. (13) and (11) into Eqs. (30a) to (30d) and 0 is

set equal to O in wh and equal to zero in vu Me resulting e1*t

homogeneous equations in the coefficients A' to D' and A to D

can be given in matrix form as

A'

- Bt

I D

D 0 (31)
SI A

SI ~BI

C,

L I _jLD j

where

cosh 7•100 cosh 72 cos Vs0o cos 7o

sinh 7100 72 Binh 7200 -73 sin 73,00 -74 sn 7s

. 2 2 2 2Of)cosh 710 '2 cosh c " oo0 7'o 7" Cos 740

3 3 3 371 Binh 7100 72 sirh Y 73 sin 7•0 3 Ns 7 1.00

4- 1



a, -0 -1 03-3

2 _ a2

(32b)

4 24 24_ 2)CS0 (4_ 2CS40

(71-2pn )coshv1%0 (y2-2pn )coahy2 O (y 3 2pn 4csv0 ( 4 2pn )o7

xcosh y 10~ x cosh Y2PO X c0o 7 300 X coo 7 400

Y y4 -2)n 4_ 2) 4_ 2) 4_ 2
71 ( 1-2f Y2 (y2 2pn -73 (y3 2p -74(74-2pn)

X sinh y 100 X sifh YP x sin 7 300 x sin 7 400

6 2 2 ký y(6 2 2_4pn __6 2_?K 6 221,A
y (y -2pn y -4pn, y2 -2pn v-pn- 3 (i+2pn~i. _4(6 .+2pn~-en

LX sinh 7 100 x sin y20 x sin 730A0 x sirt y 400

(32c)

1 1 1 1)+~j 1 1 ) 1 2 4p 2 072 Q 2

p 22 a 10 C

S(02..2)3 M2p2p24_4] 32 ~ 2 a)~ 2 4 2

2 + a2 2 2 2 2 2 )C2 2+21

-6(p~ +3)2CIiAl ~ 6 -2 (p +1 2
a -CV2(2 2) 2

(,3_a)2_d~2+,S42_2-2 C12-



A non-trivial solution for the coefficients exists onlyr if the

determinant of the matrix vanishes. Hence the buckling condition is

0 (33)

ANTISY!KE"mIC BUCKLIN3

The heated strip can also buckle antisyimetrically with respect to

the generator 0 a O' that is with respect to the center line of the

heated strip. In such a"case the coefficients A', B', C' and D' vanish

in Eq. 13 and considerations similar to those offered for symmetric

buckling lead to the following eight homogeneous linear equations:

G'I

H'

J1

- 0 (3h1)
I A

J D

Here E and Y denote the matrices given in Eqs. (32b) and (32d) and

the matrices 0' and 0' are defined as

' y siimh 72-00 sin 7300 sin 7400

71 cosh 7 o0 72 cosh 72o 73 cosn 7 • 74 con 701.0o
# 1 7 2 B i h 72 B i h7 2 s i . 0 _ 2 s i y j 9S,, 21 7100 72 sinh 72•00 "7 sinT-o -7 4

1 7100 72 o 200 .c 300 7 cos 7r1n O

-13-



4 2 4_2W sh70 4 P26n30 4 2
(71 -2 -)sinh100  ( 2 -2 7 -2 Y4 -2n )sin72-pn

6 2 6 22

(71-2=n yj-4pn (2)t -4p (7 3 +2pn Y3~ 40n) (:+2n h~-~i4

x s1hh y100  x sinh 7 00  X in 7300  x .1nY 400

(Y (7_2pn 2 7 (Y 5_2pn 2 7 (7 5_2p071) (7-20n2y)

X cos'Y 100  x cosh 4Ao X co. 73o X coo 7400

(Y ~Pn 7 -2p2) (7-4pn Y -2pn%~ _ ~.pn y+prj~ (Y-7'iPn V20' 1 4)

Xcosh Y 0 x cosh 7 200 X coo 73$'0 X coo 7400

(35b)

The condition of antisymnetric buckling is

=0 (36)

For some values of n and P the root 73 becomes imaginary. In

these cases column 3 in the matrices 0, 0', 2 and 2' takes on the

form of column 1. Occassionally 7 4 is also imaginary and then the

fourth column takes on the form of column 2.

RESUILS OF M CALCULIATIONS

The determinantal equations (33) and (36) were evaluated with the

aid of the •rroughs 220 electronic digital computer of the Computation

Center of Stanford University. For different fixed values of 00

corresponding values of p and n were computed and plotted. Such a

plot is shown in Fig. 2 for the case of antisyumetric buckling with

2,/(ah)J/2 - 9.83. Points on the curves shown satisfy the buckling

- 14 .



criterion. For practical purposes the lowest value or 0 is of interest.

For this reason the minimal values of p determined from plots of the

type of Fig. 2 were replotted in Fig. 5 in function of 2b/(ah)1/2. The

connection between O0 and the non-dimensional heated width can be

obtained from Eqs. (sb) and (6) together with the relationship

•o "b/a 
(37)

One gets

•o= 12l-02) ]1/1 b1( -- I (38)

When Poisson's ratio is 0.3, this becomes

00 1.82 (38a)

It can be seen from Fig. 3 that antisyimetric buckling occurs at

higher values of the compressive stress than symmetric buckling. One

should expect therefore that only symmetric buckling will be observed
in experiment. The buckling stress is found to be higher than that

corresponding to uniform compression. However, the increase is noticeable
only if the heated width is very small. For practical purposes one may
say that the increase may be disregarded if

2b/(ah)l/2 > 2.5 (39)

For narrower heated bands, however, the value of the critical stress in-

creases rapidly with decreasing values of 2b.

The buckle shape is sinusoidal in the axial direction. Figures 4

and 5 show the variation of the radial displacements in the circumferen-

tial direction. It can be seen that the unheated region does not show
•noticeable displacements when the heated region is wide, but it is

significantly affected when the heated region is narrow.

- 15.-
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